Plastidial NAD-dependent malate dehydrogenase is critical for embryo development and heterotrophic metabolism in Arabidopsis.

نویسندگان

  • Seraina Beeler
  • Hung-Chi Liu
  • Martha Stadler
  • Tina Schreier
  • Simona Eicke
  • Wei-Ling Lue
  • Elisabeth Truernit
  • Samuel C Zeeman
  • Jychian Chen
  • Oliver Kötting
چکیده

In illuminated chloroplasts, one mechanism involved in reduction-oxidation (redox) homeostasis is the malate-oxaloacetate (OAA) shuttle. Excess electrons from photosynthetic electron transport in the form of nicotinamide adenine dinucleotide phosphate, reduced are used by NADP-dependent malate dehydrogenase (MDH) to reduce OAA to malate, thus regenerating the electron acceptor NADP. NADP-MDH is a strictly redox-regulated, light-activated enzyme that is inactive in the dark. In the dark or in nonphotosynthetic tissues, the malate-OAA shuttle was proposed to be mediated by the constitutively active plastidial NAD-specific MDH isoform (pdNAD-MDH), but evidence is scarce. Here, we reveal the critical role of pdNAD-MDH in Arabidopsis (Arabidopsis thaliana) plants. A pdnad-mdh null mutation is embryo lethal. Plants with reduced pdNAD-MDH levels by means of artificial microRNA (miR-mdh-1) are viable, but dark metabolism is altered as reflected by increased nighttime malate, starch, and glutathione levels and a reduced respiration rate. In addition, miR-mdh-1 plants exhibit strong pleiotropic effects, including dwarfism, reductions in chlorophyll levels, photosynthetic rate, and daytime carbohydrate levels, and disordered chloroplast ultrastructure, particularly in developing leaves, compared with the wild type. pdNAD-MDH deficiency in miR-mdh-1 can be functionally complemented by expression of a microRNA-insensitive pdNAD-MDH but not NADP-MDH, confirming distinct roles for NAD- and NADP-linked redox homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lack of malate valve capacities lead to improved N-assimilation and growth in transgenic A. thaliana plants

In this study we analyzed the relationship between malate valve capacities, N-assimilation, and energy metabolism. We used transgenic plants either lacking the chloroplast NADP-dependent malate dehydrogenase or mutants with a decreased transcript level of the plastid-localized NAD-dependent malate dehydrogenase. Plants were grown on nitrate or ammonium, respectively, as the sole N-source and tr...

متن کامل

Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase.

Phosphorylating glyceraldehyde-3-P dehydrogenase (GAPC-1) is a highly conserved cytosolic enzyme that catalyzes the conversion of glyceraldehyde-3-P to 1,3-bis-phosphoglycerate; besides its participation in glycolysis, it is thought to be involved in additional cellular functions. To reach an integrative view on the many roles played by this enzyme, we characterized a homozygous gapc-1 null mut...

متن کامل

Plastidial Glycolytic Glyceraldehyde-3-Phosphate Dehydrogenase Is an Important Determinant in the Carbon and Nitrogen Metabolism of Heterotrophic Cells in Arabidopsis.

This study functionally characterizes the Arabidopsis (Arabidopsis thaliana) plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in photosynthetic and heterotrophic cells. We expressed the enzyme in gapcp double mutants (gapcp1gapcp2) under the control of photosynthetic (Rubisco small subunit RBCS2B [RBCS]) or heterotrophic (phosphate transporter PHT1.2 [PHT]) cel...

متن کامل

Preliminary Report of NAD+-Dependent Amino Acid Dehydrogenase Producing Bacteria Isolated from Soil

Amino acid dehydrogenases (L-amino acid: oxidoreductase deaminating EC 1.4.1.X) are members of the wider superfamily of oxidoreductases that catalyze the reversible oxidative deamination of an amino acid to its keto acid and ammonia with the concomitant reduction of either NAD+, NADP+ or FAD. These enzymes have been received much attention as biocatalysts for use in biosensors or diagnostic kit...

متن کامل

Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis.

Malate dehydrogenase (MDH) catalyzes a reversible NAD(+)-dependent-dehydrogenase reaction involved in central metabolism and redox homeostasis between organelle compartments. To explore the role of mitochondrial MDH (mMDH) in Arabidopsis (Arabidopsis thaliana), knockout single and double mutants for the highly expressed mMDH1 and lower expressed mMDH2 isoforms were constructed and analyzed. A m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 164 3  شماره 

صفحات  -

تاریخ انتشار 2014